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Engineering Department 


EGR 204	Combinational Design Project & VHDL	Spring 2005, Lab 4


OBJECTIVES:


To design a combinational logic circuit from a written description of desired operation.


To consider trade-offs between various design strategies such as a gate-level design verses hierarchical design, or  use of programmable logic, versus hand-wired logic, etc.


To write VHDL code to describe a circuit (not necessarily the design project circuit) at the structural-hierarchical level.  


EQUIPMENT NEEDED


Computer with Quartus II installed (Web Edition or similar.  This handout was developed with version 4.1)


Other equipment, such as a bread-board, Fox kit, Altera UP-2 kit, assorted logic chips, depending on the project design.


RECOMMENDED REFERENCE


The handout for Lab 1 contains a tutorial on using Quartus II for logic circuit simulation.


Your text (Mano and Kime, 3rd edition), especially Section 3.1


Instruction manual for Altera UP-2 Lab Kit.


Booklet, “How to Write a Laboratory Report” to be distributed next week.


INTRODUCTION


This week you will begin a design project, the first of two for this course.  You have a choice of which project to do, and how to do it.  Although VHDL is available, you are not required to use it for the project.  


Last week you observed that a VHDL file can substitute for a schematic in a design.  This week you will learn how to compose a VHDL file.  Next week you will also see that a design entered into a computer, either via schematic(s) or VHDL, can be downloaded into a programmable integrated circuit.  You may use this technique to build your project, or you may wire it up by hand the conventional way on a breadboard or on the breadboard area of a Fox Kit.  


The design project will be graded on the basis of a written report and a demonstration of a functional implementation in hardware.  The written report must include appropriate schematic(s) or VHDL code so that another person, given only the schematic(s) and/or VHDL code and your report can completely replicate your hardware.  The grading rubric for the report is described in the booklet “How to Write a Laboratory Report,” distributed separately.  


In order to have your lab report graded, you must demonstrate your project to the lab instructor.  It might happen that you think the project is working, but when you demonstrate it, it does not work or your instructor points out something that you did not realize or understand.  In that case you may fix the problem and repeat the demonstration with no penalty, provided you get the final working demonstration done before the project deadline.  The demonstration will be graded as follows:  If the project works, “A.”  If the demonstration partially works, “C” or “D” or “F,” depending on the instructor’s judgment of how much of the project works.  (The grade of “B” will not be given for the demonstration.)  Factors that can be used for partial credit are the number of lines of the truth table that function properly, the number of signals internal to the logic circuit that are operating correctly, if that can be established, etc.  The grade for the demonstration will be based on the behavior of the circuit.


The minimization of time spent on the project unfortunately cannot enter into the calculation of the grade.  The reward for those who work efficiently and employ their knowledge wisely is simply less time spent on the project.  Similarly, spending excessive time and effort on the project will not lower (or raise) your grade, assuming you meet the project deadline.  Careful use truth tables, Karnaugh-maps, schematics or VHDL code, appropriate simulation and debugging techniques, and careful construction techniques can all reduce the time you spend on the project.  Help is available.  Ask for help if you are stuck and cannot make progress.  (This is a project, not a test.)  


Students may work individually or in teams of two on this project.  No teams of three or more will be allowed.  Normally students who work in a team will build one prototype of the project in hardware and submit one lab report with both names on it.  These will be graded as if one student produced them.  Each student on a team will individually submit a one page (maximum) summary of his or her contribution to the project.  In most cases, each student will have contributed equal effort toward the project and both students on the team will get the same grade for the project, as determined from the demonstration and the report.  If one student contributes substantially more to the project than another, then the project grade will be adjusted separately and appropriately for each student to reflect the content of the two reports of contributions.  


The contribution report (required only if done by a team) must include the fraction of the project work you did, which normally should be one-half.  In the best case, the contribution report can be a single sentence, such as:  “I contributed one-half of the effort needed to complete this project.”  (Dated and signed.)  More details are needed if you deserve credit for more than one-half of the project.  You may cite any evidence you see as relevant, such as you and your partner’s hours spent on the project (report by clock time--e.g. “2/10 from 2:00 to 4:45 PM,” etc,) or tasks performed (e.g. “wired the prototype on a breadboard” or “drew the schematic in Quartus,” or “was present and offered help and comments while my partner drew the schematic in Quartus”, etc.).  Only enough information is needed to establish a basis for grade adjustments.


The grade for the project will be the minimum of the grades given for the demonstration and for the report.  Since in most cases the demonstration will receive an “A,” the report grade will usually be the project grade.  Your final grade will be a letter grade with plus or minus marks optional.  The meaning of the grades is:  “A” means exceptional, “B” means typical for an engineering student, “C” means marginally good enough for a potential employer, “D” means not good enough for a potential employer although some understanding is shown, and “F” means failure.  


FROM WORDS TO A CIRCUIT


All digital logic circuits can be divided into one of two categories.  Combinational logic circuits are those circuits whose outputs depend only on the inputs as they are at the present moment.   All other logic circuits are sequential.  For the design of combinatorial logic, one starts with a description of the problem in words.  That description can be reduced to a truth table or Boolean equations.  From that point one can manipulate the design into NAND-NAND form and build it at the gate level, or multiplexers could be used, or a decoder could be used, and there are many more options than that.  After the basic strategy is chosen, a schematic is drawn or VHDL code is written to describe the circuit.  Then the circuit can be simulated.  Simulation provides you with a chance to correct design errors before you start building the circuit.  That can save a lot of time.  Finally, the circuit is built using TTL logic gates and/or TTL logic block functions, and/or a programmable logic chip such as the MAX chip on the Altera UP-2 kit.  


On the next page you will find a selection of design problems.  Choose one, or invent your own (with prior approval).  In addition to the project, do the VHDL exercise in the last section of this handout.  This exercise should give you enough information on the use of VHDL to enable you to use VHDL for your project, should you choose that method.  Even if you choose not you use VHDL for your project, complete the VHDL exercise.  (You should understand what you are choosing against.)


�
DESIGN PROBLEMS


Choose one of the problems listed below, or with prior approval, invent your own project.  


A 2-Bit Adder


Design a circuit that forms the binary sum of two 2-bit numbers, A1A0 and B1B0.  There will be three outputs from your circuit, S2S1S0 which represent the sum bits of a binary addition.  For example, the decimal problem 3 + 2 = 5 in binary is:  112 + 102 = 1012.  Here A1 = 1, A0 = 1, B1 = 1 and B0 = 0 are the inputs and S2 = 1, S1 = 0, S0 = 1 are the expected outputs.  There is one restriciton on this problem:  You may not use half adders or full adders in any form (e.g. from a VHDL library or as a TTL part from the lab-stock drawers).  Use some other technique.


Pinewood Derby Indicator


A pinewood derby is an event where model race cars, typically carved from a given block of pine wood, about 6 by 2 by 2 inches, is raced down a track, accelerated only by gravity.  The racer’s goal is to build a car with minimum friction and drag so that it coasts down the track faster than all the other cars.  A typical track has about 4 parallel and identical lanes and is about 10 feet long, and drops about 3 or 4 feet over the length of the track.  


Suppose that the track is rigged with optical sensors at the end of the track.  The sensor in each lane will generate and hold a logic-1 value if the car on that lane wins the race.  Once a winner is found all the other sensors are shut out.  Thus, for example if the cars finish in this order:  Lane 4 third, lane 3 fourth lane 2 first, and lane 1 second, the 4-bit signal from the sensor array will be T4 T3 T2 T1 = 0010.  A signal such as T4 T3 T2 T1 = 0110 will never happen since the first bit to switch to logic-1 in the array will prevent all the others from ever becoming logic-1.  Only the wining car can trigger a sensor.  Before the winning car triggers its sensor the signal from the sensor array will be T4 T3 T2 T1 = 0000.  After the race, the person supervising the race pushes a button on the sensor array to reset all the signal bits to zeros and arm the sensors to capture the next winning event.  


Design a circuit that has as its input the 4-bit signal from the sensor array.  The output of your circuit should be 7 bits to drive a 7-segment numerical display.  The display should show 1, 2, 3, or 4 to indicate the lane in which the winning car ran.  Before the winning car triggers its sensor the display should either be blank or show 0, your choice.  


You may simulate the sensor array with four switches (from PORT 2 on the Fox Kit, from a DIP switch array on a breadboard or from a switch array on the Altera UP-2 Kit.)  Your circuit should connect to a 7-segment display.  Your lab instructor will explain how to connect a switch array on a breadboard and how to connect a 7-segment display on a breadboard (or on the breadboard of a Fox Kit.)  If you use the Altera UP-2 kit, the 7-segment display is built in and connected to certain pins on the MAX chip.  Consult the User’s Guide for pin numbers.  You need to design the logic circuit that goes between the switch array (which simulates the sensor array on the track) and the 7-segment display.  


Restriction:  You may not use any display decoder in any form (including the ‘46, ‘47, ‘48, ‘49 parts or those entities from a VHDL library.).  This does not rule out other types of decoders, such as a 4-to-16 binary decoder.  


Nine’s Complement


Design a circuit that has as input a 4-bit binary number understood to represent a decimal digit (0-9).  The output should be another 4-bit binary number that represents the input number subtracted from 9.  For example, if the input is 01102 the output should be 00112.  The example can be understood as the input representing 6 and the output representing 3 which is 9 – 6.  This is actually an important circuit in the design of most processors.


�
VHDL EXERCISE


Hardware description languages have been designed to assist with the design of digital logic circuits.  These languages allow one to work with logic circuits at several levels.  This tutorial provides a basic understanding of using VHDL to describe the structure of a logic circuit.  The word structure in this context means “what is connected to what.”  Later in the course you will see that VHDL can be also used to specify just the desired behavioral character of the circuit.  Then the Quartus II program will synthesize the needed structure for you.  


An important aspect of all hardware description languages is their ability to describe logic circuits in a hierarchical fashion.  In the previous lab you used Quartus II’s schematic editor to build a nine-input odd function.  You will now do the same design, with the same hierarchy, using VHDL.  Recall that with the schematic approach you needed to draw the lowest level first, so that you could create it as a block in the project library.  Only when that block was available in the library could you go on to draw the next level up in the hierarchy.  In this sense, the schematic approach encourages you to design from the bottom up.  There are ways around this, but they are not convenient.  You could for example create an empty block (just inputs and outputs, no logic) and use that block in a component at a higher level of the hierarchy.  Of course it will not simulate properly this way, but you could finish drawing a higher level this way.  Later, you could return to the empty block and finish drawing the logic needed there so that simulations will work.  But this is awkward.  


Hardware design languages allow you to start with the highest level of the hierarchy and work down.  Each level of the hierarchy has three important sections.  They are:


1.)	The LIBRARY section establishes file paths for finding primitives and signal types that are not native to VHDL.  For this course, we will use the STD_LOGIC type for all signals, thus every level will need access to the library that defines this type of signal.  (The BIT type of signal is native to VHDL, but not all of the library components support it.  It is much easier to use one signal type everywhere that is recognized by all library components.)  There are two libraries in particular that we will use often.  They are the ieee library std_logic_1164, which includes the definition of the STD_LOGIC signal type, and the altera library maxplus2 which includes the 74 series logic gate entities which model the TTL chips we have in our lab.  When needed, these libraries are opened and declared with the following statements:


		LIBRARY ieee;


		USE ieee.std_logic_1164.ALL;





		LIBRARY altera;


		USE altera.maxplus2.ALL


	


	All the library files are closed at the end of each level’s description by the “END a;” (or equivalent) statement.  This makes it easier to cut-and-paste code from one project to another.  If the libraries were only opened once at the beginning of the VHDL file and remained open for the whole file then it would not be clear to a human which levels need each library, if any.  It also means that the library section needs to be repeated for each level.


2.)	The ENTITY section names the level and describes the inputs and outputs of the level—the connections that are visible externally.  (For the moment, you can think of “entity” as synonymous with a description of the I/O boundary of the “level.”)


3.)	The ARCHITECTURE section describes the connections internal to the entity.  It is also possible to use this section to describe a primitive, but that will be explained later in this course.  


Open Quartus II and create a new project.  A suggested name for this project and the top-level entity is “oddv”  (The “v” for “VHDL”.)  On the course web page, in file “oddv.vhd,” is an incomplete version of the nine-input odd function in VHDL code.  Copy this file into the project folder.  Then from within Quartus II, open the file (File | open. . .) and immediately associate it with the project (File | Save As. . .).  This file has some code deleted from it which you need to add back.  Add the needed code back, as described below, and simulate the circuit.  What follows is a discussion of the VHDL file “oddv.vhd” to help you add the needed code back.    


The top-level entity


This section of the file is complete and correct.  You need do nothing with it except to study it as an example.  It can serve as a template for how to write code for a level of the hierarchy.  However, in this particular example, this level does not demonstrate all the possibilities for VHDL code.  Also study the third and fourth levels down for further needed examples.


The first section of the level, the LIBRARY section, opens the ieee.std_logic_1164 library because the I/O signals of this level are of type STD_LOGIC, which is defined in this library.  This library also defines how the primative logic functions, like AND, OR, XOR, and NOT behave.  The functions are defined by truth tables, which you may view in the library.  Other functions, are written in terms of these primitives.  For example, NAND is defined as NOT AND.  If you are curious, you may view the library.  It is typically located at “C:\Program Files\altera\quartus41\libraries\vhdl\ieee\STD_1164.VHD.”  You may open it within Quartus II by using the “File | Open. . .” command.  If you open it, just view it—do not associate it with the project or edit it.


The second section of this level in the code is the ENTITY section.  The entity statement itself defines the name of the entity.  The top-level entity is usually found by reference to the file name—the entity that matches the file name is the top-level entity.  


After the entity is named, one may optionally insert a GENERIC statement.  If you use a VHDL reference, you might see something about that.  We will not need to use the GENERIC statement in this course.  


Since this is the top-level entity, a PORT statement must define the signals that are visible externally—that is visible to the vector waveform editor for example.  This PORT statement illustrates one of two styles for the PORT statement.  In this style, one signal is listed per line of code.  This style is handy if you want to add comments about some or all of the signals, as illustrated in the “oddv.vhd” file.  (The other style will be illustrated later in the file.)  This format for the PORT statement is:


PORT(


     <signal_name>  :  <direction>  <type>;


     <as many more lines like the one above as needed>


     <signal_name>  :  <direction>  <type>);


     --Note that the last signal closes the PORT statement


     --with a closing parenthesis before the semicolon.





In the illustration above, each element in “<  >” marks, including the marks, needs to be replaced with actual code.  The other parts of the statement need to be copied literally.  VHDL ignores extra white-space, so you may use as much as you want, but where there are spaces (or tabs) you must have at least one space (or equivalently, one tab).  If you only view these files in one editor (e.g. the Quartus II text editor) then tabs are a convenient way to add lots of white space for easy reading.  On the other hand different editors handle tabs in different ways.  Sometimes, if an engineer is writing code for use in several types of systems, the engineer will only use spaces, not tabs, so that the code displays identically in every editor.  


Each signal_name must start with a letter (not a number), must not contain spaces, may contain underscores, but must not contain two consecutive underscores.  The signals listed here are the signals that connect to other entities or in the case of the top-level entity, they are the signals that connect to the vector waveform file to drive the simulator and monitor the results of simulation.  These signals correspond to “pins” in a schematic file.��The direction may be IN (input to the entity only), OUT (output from the entity only), INOUT (bidirectional), or BUFFER (same as output, except the signal is also available internal to the entity.).  


There are a variety of signal types available in VHDL.  For example, the type BIT may have the values of logic-0 and logic-1.  For the purposes of using the library functions easily, you should always declare your signals as type STD_LOGIC since most library entities do not work with signals of type BIT.  This type can have values as shown in � REF _Ref95404937 \h ��Table 1� below.  The usual values—what is usually called “logic-0” and ‘logic-1”—are “Forced to logic-�0” and “Forced to logic�-1.”  The other values allow the use of gates with tri-state and open-collector outputs.  Since the libraries generally support these types of gates, you need to use these types of signals in your VHDL code, even if you do not use those types of gates in your circuit.


Value�
Meaning�
�
‘U’�
Uninitialized (Unknown)�
�
‘X’�
Forced to unknown�
�
‘0’�
Forced to logic-1�
�
‘1’�
Forced to logic-0�
�
‘Z’�
High impedance (disconnected�
�
‘W’�
Weak unknown�
�
‘L’�
Weak logic-0�
�
‘H’�
Weak logic-1�
�
‘-’�
Don’t care�
�
Table � SEQ Table \* ARABIC �1�.  Possible values for signals of type STD_LOGIC





The third section of the level is the ARCHITECTURE section.  The architecture section must have a name which is distinct from the corresponding entity name.  In virtually all cases, there is only one architecture section for an entity.  In this case it is common to name the architecture simply “a” for “architecture.” 


After the architecture of the entity is named, the next thing to do is to declare all the signals that are internal to the entity.  In this example the top level entity has no internal signals so this section of code is missing.  It will be illustrated for you in a lower-level entity.


After the internal signals are declared, you need to declare each type of entity that will be used in this level.  This is done with a COMPONENT statement—one statement for each type needed.  The port list in the component statement must match the corresponding port list in the ENTITY statement of a lower level.  (Or it may be in an alternative syntax if the interpretation of the syntax is equivalent.)  You need not have written the ENTITY statement when you write the COMPONENT statement.  In that case, when you do write the ENTITY statement you can avoid typographic mistakes by cutting and pasting the port list from the COMPONENT statement into the ENTITY statement.  Since you are able to write a COMPONENT statement before you  have written an ENTITY statement, you may work in a top-down style, even though you cannot generate a functional netlist until all the code is written.  


The COMPONENT statement only extracts the needed information from the library (including the project library if that is where the information resides).  In order for the COMPONENT statement to work, the library needs to have been opened with a LIBRARY and a USE statement (except for the project library which by default will always be open and available to every entity.).  


After the component section a “BEGIN” statement marks the beginning of a section that describes the internal connections of the entity.  Each logic block that will be used needs to be instantiated (inserted) into the circuit.  After the BEGIN statement, you may name an instance and define which entity the instance is.  For example in the top-level the instance “u1” is a copy of the “odd9v” entity.  


The PORT MAP which follows the name of the instance creates the connections to this instance of the entity.  The signals in this list are connected to the signals in the corresponding COMPONENT PORT statement in the same order.  In this level all the signals happen to have the same names.  A better example will be discussed in the third level down.  


After all the entities needed have been instantiated and connected via PORT MAP statements, the “END a;” statement closes out the architecture, the libraries used, and the hierarchical level.  


The second level down.


In this level several lines of code have been removed and replaced with comments that contain lines of the letter “X.”  Your job is to use the information given here and in the comments of the file to replace these lines with real code so that the file can be used to create a valid netlist.  Then go on and simulate the file.  An appropriate vector waveform file for simulation is available on the course web page.  (It is the same file, “ODD.vwf,” that you used last week.)


The third level down 


The code given here is a complete example of a level that includes an internal signal.  Compare the code here with Figure 3-2(c) on page 90 of your text.


First the necessary library is opened.  Then the entity is named and the external signals are declared.  


After the architecture is named the internal signals (wires) need to be declared so that they may be used later in the BEGIN section.  There must be as many SIGNAL lines as there are internal signals.  Each internal signal should have a unique name.  In this case, there is only one internal signal named “w1.”   The syntax for the SIGNAL statement is:


SIGNAL   <signal name>   :  <type>;





The signal name must obey the usual rules (must start with a letter, etc.).  The type will always be “STD_LOGIC” for this course.  After the signals are named, the types of COMPONENTs used need to be declared.  Again, there is only one type of component used in this level.  


The BEGIN section names each instance of an entity and defines which type of entity each instance is and how it is connected.  


The “END a” statement closes out the level.  


The fourth level down


Here is another complete block which you may use as an example for reference.  


This block illustrates using type 7400 NAND gates from Altera’s maxplus2 library.  Since VHDL requires that entity names must not begin with a number, the characters “a_” are used to prefix all the 74 series entities in the library.  The library file also contains prototype COMPONENT statements for each entity in the library.  You may literally cut and past the COMPONENT statement from the library file into your VHDL code.  (Any logically equivalent syntax that uses the same signal names will also work.)  The Altera library can usually be found at C:\Program Files\altera\quartus41\libraries\vhdl\altera\MAXPLUS2.VHD.”   If you open it, only view it.  Do not associate it with the project or edit it.  Since library files can be a bit long to browse through, the “Edit | find. . .” command is a usefully quick way to find a needed COMPONENT prototype.  Just fill the desired part number (e.g. “7400”) into the find dialog box and search for it.  


You might notice that most everything is missing from the MAXPLUS2 library file except the COMPONENT statements.  (There are no ENTITY or ARCHITECTURE statements for example).  A complete version of the file was compiled by Altera to a netlist, and then all these other statements were stripped out of the file before it was distributed.  The VHDL library file is now useless except for the prototype COMPONENT statements which you need to declare the entities in your code.  When you USE the library, you are actually invoking the compiled netlist version of the library, which will work.  Altera did this to protect their intellectual property, and this is common practice.  If you want their models of the 74 series parts (or any of their other library parts) then you need to get a license and the necessary compiled files from Altera.  Their compiled files will only work on their simulator—not on a competitor’s product.  A complete VHDL file for a library could be compiled and used on a competitor’s simulator which would be a give-away from Altera’s point of view.  There are some open source VHDL libraries available on the World Wide Web—complete with the ENTITY and ARCHITECTURE statements.  These can be useful in some situations, but there may be complications with technology mapping if you want to use a programmable logic chip.  (More on programmable logic next week.)  


This level illustrates a second style of syntax for the entity’s port list.  A number of signals all of the same type (INPUT or OUTPUT, etc.) may be listed on one line.  If the line gets too long for convenient reading, you may terminate the line (with “: <direction> <type>;”) and then start a new line listing more signals of the same type (and terminate that line also with “: <direction> <type>;”).  


In this level’s architecture, the names of the instances relate to their position in the schematic drawing shown in your text, Figure 3�2(d).  
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