EGR 204
Writing and Assembling a program
page 4 of 4

[image: image1.wmf]
Engineering Department

EGR 204
Writing and Assembling a Program
Spring 2005, Lab 8

OBJECTIVES:

· To learn how to identify and use instructions useful for particular tasks.

· To learn how to assemble a program by hand.

· To learn how I/O ports are mapped to I/O addresses

· To learn how to debug a program.

EQUIPMENT NEEDED

· 1 Fox Kit microprocessor trainer with matching numbered power supply and a logic probe

· Fox MT-80Z User Manual

REFERENCES

· Fox MT-80Z User’s Manual

· handed out given in class on the Z-80.

INTRODUCTION

The goal of this lab is to write a program that adds two integers and displays the sum in binary format on a set of light-emitting diodes (LED’s). The PORT 1 and PORT 2 switches and LED’s can be used as the input and output devices. The CPU will read these switches using IN instructions and temporarily store the result in internal registers. Then the CPU will add the two numbers and write the result back out to the PORT 1 LED’s. If there is an overflow, the CPU should indicate that by turning on bit 0 of the PORT 2 LED’s. The program will loop continuously back to the start so that to the human eye, the sum displayed reflects the PORT 1 and PORT 2 switch settings in real time.

Before starting to write your program, it will be necessary to learn how to use the FOX kit. Tutorial exercises are provided in the owner’s manual for the FOX kit. Begin by scanning through Chapters 1 and 2. Note the section with the heading “Port Socket.” Also note the memory map, Figure 1-8. In Chapter 3, do experiments 1 – 7 and 10 – 12.

I/O ADDRESS MAPPING

There are two basic strategies by which CPU’s provide for necessary input and output. The Z-80 (and all the Intel x86 processors) use a technique called independent I/O (defined in your text, page 502). That means that each I/O device is assigned an address. I/O addresses are distinguishable from memory addresses. For example, a bank of LED’s might be assigned I/O address FD (all addresses are in hexadecimal in this lab handout) and that address is separate from memory address 00FD. To accommodate this, processors using independent I/O have a unique group of instructions for doing I/O. In the Fox Kit User Manual you will find the instructions grouped according to function, and you will find groups for input and output. For example, the instruction IN A, (FD) will copy the data at port address FD to register A. The parenthesis around the address in this instruction mnemonic indicate that “FD” is not literally copied into register A but rather the data found at address FD copied into register A. In this context, (FD) is a pointer to the location of the data. By convention, programmers put an address in parenthesis if it is being used as a pointer.

The other main strategy by which a CPU can provide for necessary I/O is called memory mapped I/O. With this strategy the I/O addresses are not distinguishable from the memory addresses and no separate groups of instructions are provided for doing I/O. The I/O ports of such a system act like memory as far as the CPU is concerned. Most Motorola microprocessors are of this type. Since this technique is not employed on the Z-80, no more mention will be made of it for this lab.

The Z-80 provides 8 bits for I/O addresses, therefore ports can have I/O addresses 00 through FF. (0 through 255 decimal.) I/O addresses FF, FE, and FD are conveniently decoded and available in the breadboard area for your use in mapping an I/O port to a particular address. (The Fox kit uses several of the lower numbered I/O addresses for the keypad and 7-segment displays and for the speaker and cassette tape interface, etc.)

For example, suppose you want to map the PORT 1 switches to I/O address FF. The PORT 1 section of the Fox Kit is wired so that the PORT 1 switches dump data onto the Z-80 data bus whenever /P1EN is low. All you need to do is to find a way to make /P1EN go low every time I/O address FF appears on the address bus and an input instruction is being executed. Whenever the instruction IN A, (FF) is being executed address FF will go out on the address bus. Also /RD will go low (CPU is reading) and /IORQ will go low (CPU is reading from I/O.) Decoding circuitry, already built into the Fox Kit will respond to this combination of signals and drive /INFF low. Thus, by connecting a wire from /INFF to /P1EN you have used hardware to map the port one switches to I/O address FF.

Alternatively, you could connect INFE to an inverter. Labeling the output of this inverter as /INFE you could connect it to /P1EN. Then you would have mapped the Port 1 switches to address FE instead of FF.

The Fox Kit is designed so that you can easily map the port one switches to FF and the port two switches to either FE or FD. The connections from the port one switches to the data bus are made for you on the green circuit board of the FOX kit. For the port two switches, you will have to map each bit to a data line with a jumper wire. The most sensible thing to do is connect S0 to D0, S1 to D1, etc.

A similar discussion applies for the LED’s of ports 1 and 2. Connecting P1CL to OUTFF will map the PORT 1 LED’s to address FF, and the data connections are done for you on the green circuit board. Connecting P2XCL and P2YCL to OUTFE will map the PORT 2 LED’s to address FE, but you must also map each individual LED to a data bit by connecting L0 to D0, L1 to D1, etc.

PROCEDURE

Choose an address mapping for the switches and LED’s of ports 1 and 2. Then make the appropriate jumper wire connections to establish this mapping in hardware. Test your mapping by loading an appropriate instruction in the memory (at address 1800 for example). Executing that instruction (press STEP for example to run just that one instruction and stop) and examining the contents of an internal CPU register to see that the instruction did what it was supposed to do. Test each input and output port this way (four tests).

After you have established that the address mapping and I/O instructions are working, write the short program described in the introduction to this lab and shown in the flow chart below. Load it, run it, and de-bug it if necessary using the STEP and breakpoint features of the Fox Kit.

[image: image2.wmf]and PORT 2 switches

Input data from PORT 1

Compute the sum

Write the sum out to

the PORT 1 LED's

Turn PORT 2 LED's off

Overflow?

Turn on PORT 2

LED L0

204s98lj.wmf

Figure 1. Program flow chart.

APPENDIX

STORING AND RETRIEVING PROGRAMS

Experimental work on a microprocessor system such as the Fox Kit often requires the power to be shut off to the Fox Kit so that you can modify your wiring in the breadboard area, but then all the program and data information you may have stored in the Fox Kit’s RAM is lost. To work around this problem the Fox Kit provides an interface to a cassette recorder as a mass storage device. Tapes are rather inconvenient and slow however.

The Fox Kits here at Dordt College have all been modified by adding an EEPROM. This creates a convenient, fast, and non-volatile mass storage unit for your experimental software. You can “dump” a copy of practically as much of the RAM memory as you want to the EEPROM, then shut the power off, do your wiring, turn the power back on, and “load” the RAM again from the EEPROM with just a keystrokes.

The modifications to the Fox Kit hardware include the EEPROM itself installed in socket U7 and a few extra logic gates in the upper right area of the Fox Kit. The monitor software in ROM (socket U7) has also been modified so that the monitor program is aware of the EEPROM in socket U7. The driver software for the EEPROM is stored in the upper addresses of the EEPROM itself. This driver software is write protected by hardware, but it can be accidentally erased if you cause certain kinds of short circuits in the breadboard area. (Even hardware write protection fails if you mess up the hardware!) You can avoid most problems by always removing the power when you change the wiring. In the event that you turn the power on to a defective circuit that then proceeds to write to the driver area of the EEPROM we have spare EEPROM chips ready to go, but you will have to re-enter your program and data via the keyboard. (The driver in the erased EEPROM can be reprogrammed by your instructor from a tape backup at a later time.)

For the sake of the examples that follow it is assumed you have stored the following program in the Fox Kit’s RAM:

Address Data Assembly Mnemonic Comments

1800h CDh CALL TONE2K ;Next two bytes are address of TONE2K
 1801h E2h ;Least significant byte of address
 1802h 05h ;Most significant byte of address
 1803h 76h HALT

Figure 1. An example program.

STORING A PROGRAM IN EEPROM (DUMP RAM TO EEPROM)

Step 1.)
Push the DUMP key. The display will show “
[image: image3.wmf]”which stands for “MEM” and is supposed to refer to the EEPROM memory which will be the mass storage destination.

Step 2.)
Push GO. The “-S” display is prompting you for a starting address. This is the first address in the RAM that you want copied into the EEPROM. In the example program, this is 1800. Push the number keys 1, 8, 0, 0, and observe 1800 in the display.

Step 3.)
Push NEXT. The “-E” display is prompting you for the ending address. This is the last address in the RAM that you want copied into the EEPROM. In the example program this is 1803. Push the number keys and observe the display.

Step 4.)
Push GO. The address range you specified will be copied into the EEPROM, usually taking less than a second, but maybe as much as 5 seconds. Anything previously stored in the EEPROM will be overwritten by this operation. The contents of the RAM are not altered, only copied. If “-Err” is displayed something was wrong with the range of addresses you specified.

RETRIEVING A PROGRAM FROM THE EEPROM (LOAD RAM FROM EEPROM)

Step 1.)
Push LOAD. “
[image: image4.wmf]” is displayed to show that the EEPROM will be the source.

Step 2.)
Push GO. Whatever was previously copied into the EEPROM will be copied back into the RAM into the same addresses from which it originally came.

STORING A PROGRAM ON A TAPE CASSETTE (DUMP RAM TO TAPE)

Step 1.)
Connect a patch cord from the MIC socket on the Fox Kit to the microphone input of the cassette recorder. (Optional: You may also connect a patch cord from the earphone output of the cassette recorder to the EAR socket on the Fox Kit for later retrieval of the information.)

Step 2.)
Push DUMP, then NEXT. “
[image: image5.wmf]” is displayed at first but it changes to “tAPE” when you press NEXT. Now the tape will be the mass storage destination.

Step 3.)
Push GO. The “-F” display is prompting you for a file name. File names must be four hexadecimal numbers, for example “0000” or even “BEEF.” Try entering “BEEF” using the white keys on the keypad. A tape can store many files. Later, in order to retrieve the information you must play the portion of the tape on which the file is stored. (This is in contrast to the EEPROM which can only store one file at a time, hence no need to name the file.)

Step 4.)
Push NEXT. The “-S” is prompting you for a starting address. This is the first address in the RAM that you want copied onto the tape. In the example program, this is 1800. Push the number keys 1, 8, 0, 0, and observe 1800 in the display.

Step 5.)
Push NEXT. The “-E” display is prompting you for the ending address. This is the last address in the RAM that you want copied onto the tape. In the example program this is 1803. Push the number keys and observe the display.

Step 6.)
Wind the tape using the fast forward and rewind buttons if necessary to the place on the tape where you wish to start recording. If you start at the beginning of a tape be sure you are not starting on a leader. If you choose to start recording at some other place on the tape use the tape counter to note the place on the tape. You will need to cue the tape back to the beginning of the file in order to retrieve the file. When the tape is ready, press the record and play buttons simultaneously and observe the tape starts rolling. (If it does not, be sure power is applied, the pause button is up, and that nothing is inadvertently plugged into the remote control jack on the side of the recorder.)

Step 7.)
After the cassette recorder is recording, press GO. If “-Err” is displayed, something was wrong with the addresses you entered.

Step 8.)
While the contents of the RAM are being recorded you will hear sound from the speaker of the Fox Kit. When the sound stops, stop the recording. Rewind the tape back to the beginning, of the file to get ready for later retrieval of the information.

RETRIEVING A PROGRAM FROM A TAPE CASSETTE (LOAD RAM FROM TAPE)

Step 1.)
Wind the cassette to the beginning of the file you want to retrieve. Connect a patch cord from the earphone output of the cassette recorder to the EAR socket on the Fox Kit if you have not already done so. (Optional: You may also connect a patch cord from the MIC output of the Fox Kit to the microphone input on the cassette recorder.) Set the volume control on the cassette recorder to “5” or about half way.

Step 2.)
Push LOAD, then NEXT. “
[image: image6.wmf]” is displayed at first but it changes to “tAPE” when you press NEXT. Now the tape will be the mass storage source.

Step 3.)
Push GO. The “-F” display is prompting you for the name of the file you want to copy back into the RAM. (“BEEF” was suggested above as an example of a file name.)

Step 4.)
Push GO again, then start playing the tape. The display first shows “.” until the end of a special tone that marks the beginning of a file. Then the file name will momentarily be shown, followed by
“- - - - - -” indicating that the file is being copied into RAM. The file will be loaded into the same addresses from which it was originally copied.

Several things could go wrong. If the display shows “-Err” then the tape did not play back correctly. Try again with a different volume setting. (Once you get it to work and hear what that sounds like you will be able to set the volume control by listening for an undistorted and strong signal(or just remember the setting.) If the file name on the tape does not match the one you asked for, the display will revert back to “.” and the Fox Kit will then ignore all the remaining data on the tape, even if the correct file is part of that data. You must cue the tape so that playback starts at the beginning of the correct file.

_982485546.doc
����������

_982485548.doc
����������

_1132384442.bin

_982485547.doc
����������

_982485545.doc
����������

